A

20235 120 MINUTES

1.	The to	erm taxonomy was coined by:								
	A)	de Candolle	B)	Carolus Linnaeus						
	C)	Simpson	D)	Aristotle						
2.	A) C) Determ through A) C) Branchi A) C) Which C1. 2. 3. 4. A) C) Match t 1. Kin 2. Kin 3. Kin 4. Kin A) C) A single A)	mination of the ancestral relat	ionship	of organisms and the group's evolutionary history						
	A) `	Phylogenetics	B) Carolus Linnaeus D) Aristotle tral relationship of organisms and the group's evolution B) Systematics D) Hierarchical system picts species divergence from common ancestors is know B) Cladogram D) Phylogram en below about different Taxa is/are FALSE: conophyletic group develop from a common ancestral from are not included in the group paraphyletic group have a common ancestor, but the groundants of the recent common ancestor that contain organisms that are descendants of monophyletic a group have developed from a common ancestral from a group have developed from a group have developed from a common ancestral from a group have developed from a group	Systematics						
	C)	Phylogeny	D)	Hierarchical system						
3.	Branc	ching diagram that depicts spe	cies dive	ergence from common ancestors is known as:						
		Seismogram	B)	<u> </u>						
	C)	Plesimogram	D)	Phylogram						
4.	Whic	h of the statement given below	v about o	different Taxa is/are FALSE:						
	1.	All animals in a monophyletic group develop from a common ancestral form, but all descendants of that form are not included in the group								
	2.	All organisms in a paraphyletic group have a common ancestor, but the group does not								
	3.									
		ancestor are called polyphyl								
	4.	If all organisms in a group have developed from a common ancestral form and all descendants of that form are included in the group, then the group is said to be monophyletic								
	A)	1 and 2 only	B)	1, 3 and 4 only						
		2 and 3 only		· · ·						
5.	Matcl	n the following:								
		List I		List II						
	1. K	ingdom Protista								
		ingdom Plantae								
		ingdom Fungi		<u> </u>						
	4. K	ingdom Animalia	d. U	nicellular colonial eukaryotes						
		1-b, 2-a, 3- d, 4-c	B)							
	C)	1-d, 2-c, 3-b, 4-a	D)	1-a, 2-d, 3-b, 4-c						
6.				<u> </u>						
		Neotype		* **						
	C)	Paratype	D)	Holotype						
	through time A) Phyle C) Phyle Branching of A) Seise C) Ples Which of the 1. All a desc 2. All of inclue 3. Taxo ance 4. If ald desc mon A) 1 and C) 2 ar Match the for List 1. Kingdor 2. Kingdor 3. Kingdor 4. Kingdor 4. Kingdor 4. Kingdor A) 1-b, C) 1-d, A single special									

7.	, ,		structures of with bilater The anterio	An evolutionary trend towards the concentration of sensory structures on the anterior end is cephalization, which is associated with bilateral symmetry. The anterior end of a moving animal is usually the first to encounter food, external threats and other stimuli.							
			food, exter	nal threats and	other si	timuli.					
	A)			ue, but R is not		-					
	B) C)		and R are true and R is fa	ue and R is the	correct	explanation of	A				
	D)		se and R is to								
8.	Whiel	h of the fo	ollowing stat	ements about g	erm lay	vers given belo	w are TI	RUE?			
	1.		elomic epithe peritoneum		the inn	er aspect of the	e body w	all is named			
	2.	The coe	elomic epithe		es the o	outer aspect of	the gut i	s called viscera	1		
	3.	peritone In euco		oody cavity het	ween th	ne digestive tra	ct and h	ody wall is			
	J.	3. In eucoelomata the body cavity between the digestive tract and body wall is completely lined with mesodermally derived coelomic epithelium									
	4.	A body cavity between the body wall and digestive tract, which is not lined both externally and internally by coelomic epithelia is called a coelom									
	A)	1, 2 and	l 4 are true	B)	1, 2 a	and 3 are true					
	C)	2, 3 and	l 4 are true	D)	1 and	d 3 are true					
9.		Out of the following Phyla, the skeleton of which one consists of spicules composed of calcareous or siliceous materials									
	A)	Mesozo	pa B)	Porifera	C)	Cnidaria	D)	is associated rst to encounter A TRUE? y wall is named ut is called visceral d body wall is ium ch is not lined both dom cules composed of) Ctenophora alled:			
10.	Rotife	ers posses	s a prominer	nt muscular mo	dification	on of the phary	nx calle	d:			
	A)	Mastak		B)	Lorio						
	C)	Trophi		D)	Cem	ent gland					
11.	In wh	ich contir	nent the gian	t earthworms a	re seen?	?					
	A)		ealand B)	Antartica	C)	Australia	D)	Africa			
12.	Chara	cteristic 1	arva of the P	hylum Mollus	ca:						
	A)	Actinot		B)	Velig						
	C)	Trocho	phore	D)	Zoea	l					
13.	The a	nimal kin	gdom was di	vided into Met	azoans	and Protozoan	s by:				
	A)	Carl Li		B)		Baptiste Lama	rck				
	C)	Ernst H	aeckel	D)	Char	les Darwin					
14.	Phylu	ım in whi	ich body is d	evoid of locom	otory c	ilia and flagella	a				
	A)	Annelia	la	B)	Moll	_					
	C)	Echino	dermata	D)	Arth	ropoda					

15.	Match	the follow	ving:		T ' 4 TI	r				
	2 Nila ₁ 3. Nep	List I illa perpus parvata lu hantis ser idiotus des	gens inopa		b. Coc c. Pade	ber plai onut pa				
		1-c, 2-d, 1-d, 2-b,	-		B) D)	-	-c, 3-b, 4-a -d, 3-c, 4-b			
16.	Amon A) C)	Sitophylu			a pest o B) D)	Trogo	d food grain? derma granarii hpsyches neller			
17.		. ,	silkworm in	dustry ication	of tusse:	r caterp	d up to the mark		•	
	 A) Both A and R are false and R is not the reason for A B) Both A and R are true and R is the reason for A C) A is true, but R is false. D) A is false and R is true. 									
18.	of view:						-	int		
	A)	Apis dors	sata B)	Apis ii	ndica	C)	Apis mellifera	<i>t</i> D)	Apis florea	
A) Apis dorsata B) Apis indica C) Apis mellifera D 19 In the case of induced bund breeding in fish aquaculture program, whe factors induce bund breeding of 'hardly spawning'? 1. Heavy monsoon 2. Water current 3. Temperature between 24 to 32°C 4. Cloudy season followed by								·		
	A)	1 & 2 on	ly B)	1, 2 &	4 only	C)	1, 2 & 3 only	D)	1, 2, 3 & 4	
20.	The in A)	termediate Detritus	e stage in the B)	e decom Litter	position	of the C)	organic matter Humus	into mir D)	nerals is called: All of the abov	
21.	Divers A) C)	sity of spec Alpha di Gama div	versity	ange of	all com B) D)	Beta d	is known as: liversity a diversity			
22.		sm to tran Population	living organsfer food on, Energy m, Pyramid	is c		Food cha Comm	ich one organis ain. nunity, Energy iid, Energy	m consu	imes another	
23.	Which A)	Lightning	-	ving is n	ot a nor B) D)	_	ical fixation of reen algae rites	Nitrogei	n cycle?	

24.	Whic A)	h among the for Frankice	ollowing B)	g is an example f Rhizobium	for aer	obic non-symb Azotobacter		rogen fixer? Azospirillum	
	,				,		D)	7 izespiinum	
25.		• •		distinct compone		•			
	A)	Ecological of	•		-	ies diversity			
	C)	Genetic dive	ersity	D)	All o	f the above			
26.	Amo	ng the followi	ng, find	out the reason/s	for th	e loss of biodiv	ersity		
		Unplanned dev				Inappropriate	-	ystems	
	3.	Some agriculti	ıral and	forestry practice	es 4.	Global trading	g systen	n	
	A)	1 2 & 3 onl	v B)	1, 2 & 4 only	C)	1 2 3 & 4	D)	1, 3 & 4 only	
	11)	1, 2 & 3 om	<i>y D)</i>	1, 2 & 1 omy	C)	1, 2, 3 & 1	D)	1, 5 & 1 omy	
27.								the equator is know	√n
	A)	Tropical Ra		,		perate Rain for			
	C)	Alpine fores	st	D)	Trop	ical scrub jung	le		
28.	UNE	P deals with th	ne global	l environmental	issues	and has its hea	d quarte	er at:	
	A)	Germany	B)	Switzerland	C)	France	D)	Kenya	
29.	The	outhor of the h	ook "Fa	ology of Comme	arce"·				
<i>29</i> .	A)	Paul Hawke		B)		Leopold			
	C)	Mahatma G		D)		Harlem Brundt	land		
	C)	Manatina O	anam	D)	Gio	Harrem Drundt	iana		
30.		s of learning e							
	A)	Habituation		B)		nt learning			
	C)	Insight learn	ning	D)	All o	f the above			
31	Who	introduced im	printing	?					
-	A)	Maier	B)	Kohler	C)	Lorenz	D)	Lashley	
	-								
32.			-	s in the emulsifi				-	
	A)	Bilirubin	В)	Biliverdin	C)	Bile salts	D)	LDL	
33.	The r	oint at the info	erior poi	rtion of the trach	ea, wh	ere it branches	to form	n the right and the le	eft
	prima	ary bronchus is	s named	:				C	
	A)	Carina	B)	Tracheolus	C)	Hilus	D)	Bolus	
34.	Midd	le thin laver o	f the hur	man eye is called	1.				
<i>J</i>	A)	Sclera	B)	Choroid	 C)	Retina	D)	Ora serrata	
	11)	Selela	2)	Chorola	<i>C)</i>	11011110	2)		
35.		-	ections a	are given at the o	onset c	of childbirth to	increase	e contractions of the)
	uteru			D)	D 1	<i>.</i> •			
	A)	Oxytocin		B)	Prola		- 4 -		
	C)	FSH		D)	Prog	esterone and Es	strogen		

as:

36.		Assertion (A) Mitochondria in striated muscle fibres are large and numerous Reason (R) Striated muscle cells are found throughout the animal kingdom, from sponges to insects and from insects to mammals										
	A) B) C) D)	Both A and R are true, but R A is true and R is the reason Both A and R are false A is false and R is true		the reason for A								
37.	What	are the phases of inflammator	y respo	nse?								
	A)	Fluid phase	B)	Cellular phase								
	<u> </u>											
38. 39.	The f											
	A)	Proliferation phase	B)	Growth phase								
	C)	Multiplication phase	D)	Maturation phase								
39.	Whic	h type of a blastula is seen in i	nsects?									
	A)	Coeloblastula	B)	Stereoblastula								
	C)	Discoblastula	D)	Periblastula								
40.	Resti	tution occurs during:										
	A)	Meiotic thelytoky	B)	Ameiotic thelytoky								
	C)	Arrhenotoky	D)	Autofertilization								
41.	Assertion (A) – Amniocentesis is not performed before the 15 th week of gestation Reason (R) – Before this stage the amount of amniotic fluid is insufficient to permit safe extraction for culturing											
	A)	Both A and R are false and I	R is not	the reason for A								
	B)	A is true and R is false										
	C)	Both A and R are false										
38. 39. 40. 41.	D)	Both A and R are true and R	is the	reason for A								
42.		ype of placenta in humans										
	A)	Monodiscoidal	B)	Bidiscoidal								
	C)	Cotyledonary	D)	Diffuse								
43.		oxidation of fatty acids result i	-									
	A)	Glucose	B)	CO ₂ and water								
	C)	Pyruvate	D)	Acetyl Co-A								
44.		th is the first visible product of		•								
	A)	Glyceraldehyde	B)	Oxaloacetic acid								
	C)	3-phospho-glyceraldehyde	D)	1-phospho-3-glyceraldehyde								

45. At which part of the mitochondria, fatty acids are linked to coenzyme A before they are oxidized:									
	A) C)	Inner membrane Cristae	B) D)	Outer membrane Matrix					
46.	The sy A) B) C) D)	ynthesis of inosinic acid begins 5-phospho ribosyl phosphate D-ribose-5-phosphate Glycinamide ribotide 2-amino-N-ribosylacetamide	;						
47.	threon			by a sequence of 5 enzymes. The first enzyme and product of the sequence, L- isoleucine. This Allosteric inhibition Both A and B					
48.		vo ends of every protein molectus a freegroup. Amino, Carboxy Amino, Aceto	B) D)	distinct. One end has a freegroup and the free Carboxy, Amino Carboxy, Aceto					
49.	Vitam A)	in deficiency disorder scurvy : Vitamin B ₁ B) Vitam		ed by: C) Vitamin D D) Vitamin B ₁₂					
50.	Electron A) C)	on microscope has a resolving $1A^{\circ} - 5 A^{0}$ $0.2A^{0}$ $10.0 A^{0}$	power B) D)	of: $2A^{\circ}-7 A^{0}$ $1.2 A^{0} - 8 A^{0}$					
51.	Rf value in Chromatography can be calculated by the formula:								
	A) B)	Distance travelled by the sub Distance travelled by the sub Distance travelled by the sub Distance travelled by the so	ostance bstance						
	C) Distance travelled by the solvent Distance travelled by the solute Distance travelled by the solvent								
	D)	Distance travelled by the sul							
52.	Nuclea A) C)	ar magnetic resonance was firs Isidor Rabi Edward Mills Purcell	st descr B) D)	ibed and measures in molecular beams by: Felix Bloch Russel H Varlan					
53.	Out of A)	f the following which is not an CO-epistatic genes Incomplete dominance	instand B) D)	ce of interaction between allelic genes? Inheritance of lethal genes Co-dominance					

54.	The t	ype of arrangement with two	o wild typ	e alleles on the same chromosome is called
		and this type of relationship	of wild ty	ype and mutant linked genes is called
	A)	Trans arrangement, Repul		
	B)	Cis arrangement, Couplin	g	
	C)	Trans arrangement, coupli	_	
	D)	Cis arrangement, Repulsion	n	
55.	Paran	naecin is a substance secrete	•	
	A)			, which is toxic to sensitive strain
	B)			hich is toxic to the sensitive strain
	C)			nich is toxic to both killer and sensitive strain
	D)	Paramecium aurelia sensit	ive strain	, which is not at all toxic to both strains
56.	The f	irst step in the preparation o	f cDNA fi	rom mRNA is:
	A)	Isolation of mRNA	B)	Replacement of mRNA
	C)	Addition of DNA strand	D)	None of the above
57.	For w	which type of work, Kary Mu	ıllis was a	warded Nobel Prize in 1993:
	A)	RNA amplification by Pla	smids	
	B)	DNA amplification by Pol	lymerase	Chain Reaction
	C)		-	strand on DNA template by DNA polymerase
	D)	Sealing the gap between I)NA stran	ds by ligases
58.	West	ern blot technique was name	d in1981t	· ·
	A)	Neal Burnette	B)	Edwin Southern
	C)	James Alwine	D)	David Kemp
59.	Acho	ndroplasia:		
	A)	Is a genetic disorder due to	o autosom	nal dominant mutation
	B)	Is an inherited disorder du	e to autos	somal recessive mutation
	C)	Is a hereditary disease cau	sed by a s	single gene mutation
	D)	Is an abnormality due to n	nonosomy	of sex chromosome
60.	A fev			elow. Find out which one is FALSE
	A)	Some of the smaller virus	•	y 200 A ⁰ in diameter
	B)	They lack a cellular struct	ure	
	C)	They have an independent		
	D)	Many of the smaller virus	es can be	crystallized and they behave like chemicals
61.	Name	e the phenomenon by which	some spe	cies of bacteria exhibit great variation in the shape
	and s	ize of individual cells:		
	A)	Pleiotropism	B)	Amphitrichism
	C)	Pleomorphism	D)	Polymorphism
62.			oplasmic	reticulum, which type is responsible for the
	•	nesis of fat?		
	A)	Vesicles		
	B)	Rough endoplasmic reticu	lum	

	C) D)	Smooth endoplasmic reticul Tubules	um								
63.	,	hase in cell cycle is:									
63.64.65.66.67.70.	A)	When RNA and proteins are	synthe	esized a	nd there is no D	NA rep	lication				
	B)	The period from the end of	•			1					
64.65.66.67.68.69.	Ć)	The period of actual division				mitosis					
	D)	The transition from G1-phas									
64.	Mito	otic chromosomes are transcript									
	A)	Condensed form of chromat									
	B)	Energy needed for transcrip									
	C)	RNA polymerase and the S-	factor of	containe	ed in it get dena	tured wl	nen combined with				
	D)	spindle forming molecules During mitosis, no transcrip	tion tak	kes place	e						
65.	Out o	of the following type of endopl	asmic r	eticulur	n (ER), which o	one poss	sesses more pores?				
	A)	Annulate ER B) Roug		C)	Smooth ER	D)	Transitional ER				
66.	Amo	ong the following statements, w	hich or	ne is NC	T TRUE about	cancer?	•				
	A)	In cultured malignant cells, fibronectin is either absent or much reduced 'Hayflick' limit is well established in cancer cells									
	B)										
	C)	Carcinomas are cancers aris					m and				
		endoderm and include app									
c -	D)	Cancer cells usually show n	uclear a	and nuc	leolar hypertrop	ohy					
67.		which of the following base pairs				tempera	ature?				
67.	A)	5' ATGCTGAT-3'	B)		CATAGCT-3'						
		3'-TACGACTA-5'		3'-C(GTATCGA-5'						
	C)	5'-AATAAAGC-3'	D)		ATGCTGC-3'						
		3'-TTATTTCG-5'		3'- T'	TACGACG-5'						
68.	Term	minism is the formation of:									
	A)	A DNA from RNA									
	B)	A RNA from DNA									
	C)	Monocistronic mRNA from	DNA								
	D)	Ending of DNA replication									
69.		process by which expression of	f genes	is turne	d on in respons	e to a su	bstrate in the				
		ronment is called:		~``	.						
	A)	Induction B) Repre	ession	C)	Regulation	D)	Promotion				
70.		w statements about the comporis false?	ents of	Lac op	eron are given l	below .F	ind out which				
	A)	A set of structural genes									
	B)	A promoter gene to which the	•	me DN	A polymerase b	oinds and	d initiates the				
	<i>C</i> '	transcription of structural ge			.1 . 1 .		0.1				
	C)	An operator site, which is a structural Genes		_	_						
	D)	A regulator gene, which end	odes a	protein	that recognizes	the ope	rator sequence				

71.	first stage (transc	cription) i	
	Reason (R) – Gene expression it is an energy c		nrough corresponding protein synthesis and g process
	A) Both A and R are false anB) Both A and R are true and		
	C) A is true and R is falseD) A is false and R is true and		
72.	In the Henle's loop, during the pr		<u>=</u>
	A) Excess salts and water areB) Excess hydrogen ions are		
	C) Glucose, salt and water ar		
	D) Drugs and other poisons a		
73.	A character that is shared, derived known as:	d and con	nmon between an ancestor and its descendants is
	A) Plesiomorphic	B)	Apomorphic.
	C) Synapomorphic	D)	Autoapomorphic.
74.	Match the following		
	List I	List I	
	 Parazoa. Radiata 		tenophora Lotifers
	3. Acoelomate		ponges
	4. Psuedocoelomate		latyhelminthes
	A) 1-a, 2-c, 3-b, 4-d	B)	1-c, 2-a, 3-b, 4-d
	C) 1-b, 2-d, 3-a, 4-c	D)	1-c, 2-a, 3-d, 4-b
75.	The immediate ancestors of the g		
	A) Homo floresiensis		
	C) Homo neaderthalensis	D)	Pan paniscus
76.	The phylogenetic tree that has bra of its member species is:	nch leng	ths proportional to the amount of character change
	A) Dendrogram	B)	Cladogram
	C) Chronogram	D)	Phylogram
77.	Any evolutionary change at or ab		<u> </u>
	A) Micro evolution	B)	Co evolution
	C) Mega evolution	D)	Macro evolution
78.	Male-induced implantation failure	e is know	rn as:
	A) Bruce effect	B)	Flehmen
	C) Vander Bergh effect	D)	Whitten effect

79.	Interleukins are a class of cytokines classified on structural features. Interleukin 2 stimulates:										
	A)	the formation of red and	d white blood	d cells from ster	n cells						
	B)	T _H cells in presence of inflammatory response	antigens, che	mically attracts	phago	cytes i	n				
	C)	proliferation of antigen		-	ration and	d diff	erentiation				
		of B- cells and activation									
	D)	activity of macrophage viral replication	s against mici	robes and tumo	ur cells,	ınhıbıt	s intracellular				
80.	Station	nery phase of cation excl	nange chroma								
	A)	Negatively charged	B)	Positively cha	rges						
	C)	Zwitter ionic	D)	No charge							
81		statements are given bel									
	A)	The relationship between			a change	in one	e variable				
	D)	does not result in a char	•								
	B)	The correlation may be	•	_	1 . 4						
	C) D)										
	D)	correlation and Karl Pe				atter di	agram, rank				
82.	In RFI	LP:									
	A)	Several different restric	tion endonuc	leases are used	to produ	ce DN	A fragments of				
		different lengths.									
	B)	Restriction endonucleases cleave DNA at random locations. A specific endonuclease which cuts DNA at specific sequences is used.									
	C)				-						
	D)	Polymorphic DNA are	amplified by	PCR to obtain	DNA of	differe	ent sizes.				
83.	introduced the category, family , between the levels order and genus andadded a new category, Phylum , above the level of class.										
	A)	Butschli, Haeckel	B)								
	C)	Butschli, Linnaeus	D)	Butschli, Whi	ııaker						
84.		cognition sequence of th		•							
	A)	,	AAGCTT	C) GAAT		D)	AGCT				
		AGCT	ГТССАА	CTTA	AG		TCGA				
85.	The ho	oney bees that are domes									
	A)	Apis cerana indica and	-								
	B)	Apis cerana indica and									
	C)	Apis dorsata and Apis of									
	D)	Apis mellifera and Apis	s cerana indic	ca.							
86.	Identif	fy the correct match:									
	1.	Sericin	p.	Cormorant							
	2.	Ceratovacuna lanigera	q.	Perna viridis							
	3.	Guano	r.	Bombyx mori							
	4.	Raft culture.	S.	Saccharum of	ficinarun	1					
	A)	1-s; 2-r; 3-p; 4-q	B)	1-r; 2-q; 3-p; 4							
	C)	1-q; 2-p; 3-s; 4-r	D)	1-r; 2-s; 3-p; 4	l-q						

87.	Assertion (A): The wings of the bird and bat are analogous as wings, but homologous as forelimbs. Reason (R): Birds and bats did not inherit wings from a common ancestor with wings, but they did inherit forelimbs from a common ancestor with forelimbs. A) Both A and R are true, and R is the reason for A								
	B) A C) A	Both A and R a A and R are tru A and R are fal A is false, but F	e, and R is no						
88.	A) I B) F C) V	from the follo Lichen Roots of certain Wood-eating te Aphids and and	leguminous	plants a	and <i>Rhiz</i>			utualism	
89.		lutionary era ir Hadean	which reptiles) Arche		domina C)	nt: Proterozoic	D)	Phanerozoic	
90.	 A) In Ontario, Canada, almost the entire biota of about 1200 lakes have been wiped ou B) At St. Paul's cathedral in UK, the stone work is being eaten away at the rate of an in every 100 years C) The great monument Taj Mahal is exposed to the corrosive action 							ave been wiped out y at the rate of an inch	
91.	A) N	earance of a sp Neutral evolution Founder effect		ssil reco B) D)	Puncti	example for: nated equilibrated equilibrated equilibrates to the contractions of the contraction of the contractions of the co		se extinction	
92.	A) A B) F C) A C D) A	Ye the wrong statement. A population bottleneck results in the reduction of robustness of the surviving population with respect to adapting to subsequent selecting environmental changes. High rates of gene flow can reduce the genetic differentiation between two groups, increasing homogeneity and increasing the chances of speciation. A large gene pool is associated with extensive diversity and robust populations that can survive periods of intense selection. A consequence of a smaller population size is the accumulation of mutations in the population.							
93.	A) A	es whose remov Apex organism Keystone speci		the colla B) D)	Flagsh	a stable comn ip species ella species	nunity is	s known as	
94.	Identify solid wa		t can occur a	s a cons	equence	e of improper	manage	ement of municipal	
	A) (Cancer Life-style disea	ses	B) D)	Plague Itai-ita	e ii disease			

95.	Water for drinking should have a BOD									
	A)	More	than 1 mg per 1	litre						
	B)	Less t	han 1 mg per li	itre						
	C)	Betwe	een 1 and 1.5 m	ng per litre						
	D)		of the above							
0.6				- 1.						
96.			sity hotspots in		1.4	A 1				
	A)		limalayas, the V							
	B)		limalayas, the V			_	•	. 1		
	C)		limalayas, the		-	_	•	ne Andama	ns.	
	D)	The V	Vestern Ghats,	Gangetic plai	ns and th	nose Himalay	as.			
97.	The m	ean spe	ecies diversity i	n a habitat at	the loca	l level sub-un	it is knov	vn as		
	A)	-	diversity	B)		diversity				
	C)	-	na diversity	D)		tion index				
	-)	G W 1111 1		2)	15516					
98.			Introduction of							
	Staten	nent 2:	Food producti	ion using intr	oduced a	lien species l	ıas been b	eneficial to)	
			mankind.							
	A)	Both s	statements are t	true and supp	lement e	ach other.				
	B)		statements are t				dent of ea	ch other.		
	C)		statements are t			-				
	D)	Stater	nent 1 is true, b	out statement	2 is false	and contradi	icts staten	nent 1.		
	,		,							
99.	Which among the following phenomena is closely associated with the formation of rain A) Green house effect B) Adiabatic cooling									
	A)			B)		batic cooling				
	C)	Rising	g winds	D)	Prese	ence of moun	taın range	es		
100.	On which type of monochromatic light is based on Raman spectroscopy?									
100.	A)		c scattering	B)		ic scattering	resear).			
	C)		tic scattering	D)		astic scattering	ισ			
	<i>C)</i>	meras	tie seattering	Ъ)	11001	astro scattern	15			
101.	The qu		hat use is a sav		a forest	?" by Herman	Daly refe	ers to:		
	A)	Envir	onmental justic	e						
	B)	Sustai	inable developr	nent						
	C)	Impor	tance of re-pla	nting of fores	ts with t	rees that can l	be used fo	r timber		
	C) Importance of re-planting of forests with trees that can be used for timberD) In-situ conservation strategies									
102.	The Amoco Cadiz disaster was caused by:									
102.	A)		sion of a chem	_		the Amoco (ornoratio	n in Indian	12	
	B)	-	oillage along the		-		Jorporano	ii iii iiidiaii	.a.	
		_	ige of radioacti		•		and Mual	oor roootor		
	C)									
	D)	mausi	trial fire and dis	sasici ai DOII	ivay nig	i otishote ari	mig piati	101111.		
103.	Which	among	g the following	is/are catego	rised as 1	migratory bire	ds?			
	1. Arc	ctic Ter	n.	2. I	Red-vent	ed Bulbul.				
	3. Kii	ng fishe	er.	4.	Siberian	crane.				
	A)	1 and	2 B)	1 and 4	C)	2 and 4	D)	1 only		
	/		,		,		,	2		

- 104. Which among the following is not a function of ghrelin?
 - A) Promoting the assimilation of fat.
 - B) Preventing the assimilation of fat.
 - C) Lowering the utilisation of fat.
 - D) Increasing appetite.
- 105. In the human digestive system, tri-glyceride fats are digested and broken down to
 - A) A mixture of fatty acids, mono- and di-glycerides, some undigested triglycerides and glycerol.
 - B) A mixture of fatty acids, mono- and di-glycerides, undigested triglycerides and glucose.
 - C) A mixture of fatty acids, mono- and di-glycerides, and some undigested triglycerides.
 - D) A mixture of fatty acids, mono- and di-glycerides, some undigested triglycerides and cholesterol
- 106. Statement 1: Orientation and movement of an animal towards the direction of an external stimulus is known as taxis while orienting and movement at an angle to the stimulus is called menotaxis.
 - Statement 2: Mnemotaxis is seen in animals that orient themselves by memorising their surroundings while tropotaxis is seen in animals with paired receptors that track a particular stimulus.
 - Statement 3: Menotaxis is seen in honey bees and moths which use the position of the source of light as the orienting stimulus, while mnemotaxis is seen in wasps.
 - A) Statement 1 and 3 are correct
 - B) Statement 1 alone is correct
 - C) Statements 1 and 2 are correct
 - D) All the statements are correct.
- 107. In Bohr effect:
 - 1. Higher pH increases the affinity of haemoglobin to oxygen.
 - 2. Lower pH reduces the affinity of haemoglobin to oxygen.
 - 3. Increase in partial pressure of CO₂ reduces the affinity of haemoglobin to oxygen.
 - 4. Reduction in partial pressure of CO₂ reduces the affinity of haemoglobin to oxygen.
 - A) All statements are correct.
 - B) Statements 1 and 2 are correct.
 - C) Statements 1, 2 and 3 are correct
 - D) Statements 1, 2 and 4 are correct.
- 108. Acetyl choline esterase is involved in:
 - A) Digestion of fatty acids
 - B) Normal functioning of the Kreb's cycle
 - C) Normal functioning of the nervous system
 - D) Beta-oxidation of fatty acids

109.	A disease that affects Schwann cells is:				
	A)	Alzheimer's disease	B)	Hansen's disease	
	C)	Down's syndrome	D)	Crohn's disease	
110.	Effect: Insulin resistance seen in type 2 diabetes of elderly people occurs even though the pancreas produces insulin. Cause:				
	1.	1. Cross reacting auto-antibodies which bind to and neutralise insulin prevent the insulin produced by the pancreas from reaching their receptors.			
	2.	The pancreas fails to produce insulin due to age related dysfunction.			
	3.			either masked or down-regulated.	
	A)	The effect and cause 1 are and 3 are wrong.	e correct,	and the cause substantiates the effect. Causes 2	
	B)	The effect is wrong because insulin resistance is caused due to the inability of the pancreas to produce insulin. Therefore, the cause 2 is correct, but does not substantiate the effect. Causes 1 and 3 are wrong.			
	C)	Č			
	D)		e correct a	and the cause substantiates the effect. Causes 1	
111.	Retinitis pigmentosa is:				
	A)	An inherited genetic defe			
	B)	Impairment of vision due to the deficiency of vitamin A.			
	C)	Impairment of vision due to the deficiency of vitamin B.			
	D)	Impairment of vision due to abnormality in the curvature of the retina.			
112.		An example for adult stem cells in mammals is:			
	A)	Hepatocytes	B)	Hematopoietic stem cells	
	C)	Interneurones	D)	Glial cells	
113.	Chemicals that pass through the placenta and cause congenital defects are known as:				
	A)	Epigenetic agents	B)	Teratogenic agents	
	C)	Mutagenic agents	D)	Toxicophore	
114.	The Ramachandran plot gives an idea of:				
	A)	Kinetics of enzyme inhibition.			
	B)	Structure of the DNA.			
	C)	Protein structure.			
	D)	Amino acid sequences in	proteins.		
115.	The chemi-osmotic gradient in the mitochondria facilitates:				
	A)	A) Movement of ATP.			
	B)				
	C)	•			
	D)	D) Oxidation of Hydrogen ions.			

- 116. A conjugate used in ELISA technique is:
 - A) Ortho-phenylenediamine dihydrochloride
 - B) Fluorescein isothiocyanate
 - C) Horse radish peroxidase
 - D) Secondary antibody
- 117. The link between bacteria and diseases was established by:
 - A) Charles Darwin
- B) Edward Jenner
- C) Louis Pasteur
- D) Robert Koch
- 118. Assertion: Persons with O- blood group are known as universal blood donors while persons with AB+ blood group are known as universal acceptors.
 - Reason 1. Universal donors lack blood group antigens as well as Rhesus factor.
 - Reason 2: People with O- blood group carry antibodies against blood group antigens while people with AB+ blood group do not.
 - Reason 3: People with O- blood group are called universal donors because they can donate blood many times without their health being affected.
 - A) The assertion is true and all three reasons are correct.
 - B) The assertion is true and reasons 1 and 2 are correct but reason 3 is wrong.
 - C) The assertion is true and reason 3 alone is true, while reasons 1 and 2 are wrong.
 - D) The assertion is false because universal donors are people with AB+ blood group and universal acceptors are people with O- blood group. Hence the reasons do not sustain the assertion.
- 119. Kinesins are:
 - A) Cofactors of enzymes which engage and activate the enzyme.
 - B) Proteins that move along microtubules and are involved in the transport of cargo from the centre of the cell to its periphery.
 - C) Proteins within the endoplasmic reticulum and are involved in the transport of translated proteins.
 - D) Proteins that move along microtubules and are involved in the transport of cargo from the periphery of the cell to its centre.
- 120. Identify the true statement/s with respect to the Molecular clock hypothesis
 - 1. Indicates the rate of evolutionary change of any specified protein over time.
 - 2. Is true for all proteins.
 - 3. Cannot be applied if fossil records are not available.
 - A) All statements are true B) Statements 1 and 3 are true
 - C) Statement 1 alone is true D) Statement 3 alone is true